Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567725

RESUMO

Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.

2.
Chembiochem ; : e202400204, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602716

RESUMO

Pathogenesis-related class 10 (PR-10) proteins play a crucial role in plant defense by acting as ribonucleases. The specific mechanism of action and substrate specificity of these proteins have remained largely unexplored so far. In this study, we elucidate the enzymatic activity of Pru p 1, a PR-10 protein from peach. We demonstrate that this protein catalyzes the endonucleolytic backbone cleavage of RNA substrates into short oligonucleotides. Initial cleavage products, identified through kinetic analysis, can bind again, priming them for further degradation. NMR binding site mapping reveals that the large internal cavity of Pru p 1, which is characteristic for PR-10 proteins, serves as an anchoring site for single-stranded ribonucleotide chains. We propose a structure-based mechanistic model that accounts for the observed cleavage patterns and the inhibitory effect of zeatin, a nucleoside analog, on the ribonuclease activity of Pru p 1.

3.
Anal Chem ; 95(44): 16123-16130, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37877738

RESUMO

Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Ubiquitina , Ciclotrons , Análise de Fourier
4.
J Am Chem Soc ; 145(28): 15284-15294, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420313

RESUMO

Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.


Assuntos
Neomicina , Riboswitch , Framicetina , Antibacterianos/metabolismo , Aminoglicosídeos , RNA , Espectrometria de Massas , Sítios de Ligação , Conformação de Ácido Nucleico , Ligantes
5.
ACS Chem Biol ; 18(10): 2233-2239, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37433044

RESUMO

Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are frequently needed for structural and functional studies of protein synthesis in the ribosome. Such conjugates are accessible by chemical solid-phase synthesis, allowing for the utmost flexibility of both the peptide and the RNA sequence. Commonly used protection group strategies, however, have severe limitations with respect to generating the characteristic Nα-formylmethionyl terminus because the formyl group of the conjugate synthesized at the solid support is easily cleaved during the final basic deprotection/release step. In this study, we demonstrate a simple solution to the problem by coupling appropriately activated Nα-formyl methionine to the fully deprotected conjugate. The structural integrity of the obtained Nα-formylmethionyl conjugate─and hence the chemoselectivity of the reaction─were verified by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry sequence analysis. Additionally, we confirmed the applicability of our procedure for structural studies by obtaining two structures of the ribosome in complex with either fMAI-nh-ACCA or fMFI-nh-ACCA in the P site and ACC-PMN in the A site of the bacterial ribosome at 2.65 and 2.60 Å resolution, respectively. In summary, our approach for hydrolysis-resistant Nα-formylated RNA-peptide conjugates is synthetically straightforward and opens up new avenues to explore ribosomal translation with high-precision substrate mimics.


Assuntos
Aminoacil-RNA de Transferência , RNA , Aminoacil-RNA de Transferência/metabolismo , RNA/metabolismo , Peptídeos/química , Ribossomos/metabolismo
6.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174665

RESUMO

The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.


Assuntos
Hydra , Animais , Humanos , Hydra/genética , Sequência de Aminoácidos , Genes myc , Sequências Hélice-Alça-Hélice , Aminoácidos
7.
J Am Soc Mass Spectrom ; 34(4): 608-616, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36930827

RESUMO

Two-dimensional mass spectrometry (2D MS) is a method for tandem mass spectrometry in which precursor and fragment ions are correlated by manipulating ion radii rather than by ion isolation. A 2D mass spectrum contains the fragmentation patterns of all analytes in a sample, acquired in parallel. We report ultrahigh-resolution narrowband 2D mass spectra of a mixture of two histone peptides with the same sequence, one of which carries an acetylation and the other a trimethylation (m/z 0.006 difference). We reduced the distance between data points in the precursor ion dimension and compared the accuracy of the precursor-fragment correlation with the resolving power. We manage to perform label-free quantification on the histone peptide mixture and show that precursor and fragment ions can be accurately correlated even though the precursor ions are not resolved. Finally, we show that increasing the resolution of a 2D mass spectrum in the precursor ion dimension too far can lead to a decline in the signal-to-noise ratio.


Assuntos
Histonas , Peptídeos , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Íons/química
8.
Food Chem ; 410: 135374, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608553

RESUMO

Naturally occurring polyphenols can modify the molecular properties of food allergens. For the major apple allergen Mal d 1 it has been postulated that chemical reactions with polyphenols cause permanent changes in the tertiary structure, causing a loss of conformational IgE epitopes and reducing allergenicity. In our study, we investigated the effect that reactions with oxidized polyphenols have on the structure of Mal d 1 by mass spectrometry and NMR spectroscopy. We showed that a surface-exposed cysteine residue in this allergen spontaneously reacts with oxidized polyphenols under formation of a defined covalent adduct. Chemical modification of Mal d 1 did not destabilize or perturb the three-dimensional fold, nor did it interfere with ligand binding to its internal pocket. A structural model of the chemically modified apple allergen is presented, which reveals that the bound polyphenol partially covers a conformational IgE epitope on the protein surface.


Assuntos
Malus , Malus/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Cisteína , Alérgenos/química , Epitopos , Imunoglobulina E
9.
Foods ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230029

RESUMO

The protein Mal d 1 is responsible for most allergic reactions to apples (Malus domestica) in the northern hemisphere. Mal d 1 contains a cysteine residue on its surface, with its reactive side chain thiol exposed to the surrounding food matrix. We show that, in vitro, this cysteine residue is prone to spontaneous chemical modification by ascorbic acid (vitamin C). Using NMR spectroscopy and mass spectrometry, we characterize the chemical structure of the cysteine adduct and provide a three-dimensional structural model of the modified apple allergen. The S-ascorbylated cysteine partially masks a major IgE antibody binding site on the surface of Mal d 1, which attenuates IgE binding in sera of apple-allergic patients. Our results illustrate, from a structural perspective, the role that chemical modifications of allergens with components of the natural food matrix can play.

10.
Chempluschem ; 87(11): e202200256, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220343

RESUMO

High-resolution mass spectrometry was used for the label-free, direct localization and relative quantification of CMC+ -modifications of a neomycin-sensing riboswitch aptamer domain in the absence and presence of the aminoglycoside ligands neomycin B, ribostamycin, and paromomycin. The chemical probing and MS data for the free riboswitch show high exposure to solvent of the uridine nucleobases U7, U8, U13, U14, U18 as part of the proposed internal and apical loops, but those of U10 and U21 as part of the proposed internal loop were found to be far less exposed than expected. Thus, our data are in better agreement with the proposed secondary structure of the riboswitch in complexes with aminoglycosides than with that of free RNA. For the riboswitch in complexes with neomycin B, ribostamycin, and paromomycin, we found highly similar CMC+ -modification patterns and excellent agreement with previous NMR studies. Differences between the chemical probing and MS data in the absence and presence of the aminoglycoside ligands were quantitative rather than qualitative (i. e., the same nucleobases were labeled, but to different extents) and can be rationalized by stabilization of both the proposed bulge and the apical loop by aminoglycoside binding. Our study shows that chemical probing and mass spectrometry can provide important structural information and complement other techniques such as NMR spectroscopy.


Assuntos
Riboswitch , Neomicina/química , Neomicina/metabolismo , Ribostamicina/química , Ribostamicina/metabolismo , RNA , Paromomicina/química , Paromomicina/metabolismo , Framicetina , Aminoglicosídeos , Antibacterianos , Ligantes , Oligonucleotídeos/química , Espectrometria de Massas
11.
J Am Chem Soc ; 144(23): 10344-10352, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35666572

RESUMO

Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.


Assuntos
RNA Catalítico , RNA , Pareamento de Bases , Guanina , Mutagênese , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/química
12.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205070

RESUMO

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio (m/z) dimension and the fragment ion m/z dimension. The phase of the ion signals evolves linearly in the precursor m/z dimension and quadratically in the fragment m/z dimension. This study demonstrates that phase-corrected absorption mode 2D mass spectrometry improves signal-to-noise ratios by a factor of 2 and resolving power by a factor of 2 in each dimension compared to magnitude mode. Furthermore, phase correction leads to an easier differentiation between ion signals and artefacts, and therefore easier data interpretation.

13.
Nat Commun ; 12(1): 3877, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162884

RESUMO

Methylation is a prevalent post-transcriptional modification encountered in coding and non-coding RNA. For RNA methylation, cells use methyltransferases and small organic substances as methyl-group donors, such as S-adenosylmethionine (SAM). SAM and other nucleotide-derived cofactors are viewed as evolutionary leftovers from an RNA world, in which riboswitches have regulated, and ribozymes have catalyzed essential metabolic reactions. Here, we disclose the thus far unrecognized direct link between a present-day riboswitch and its inherent reactivity for site-specific methylation. The key is O6-methyl pre-queuosine (m6preQ1), a potentially prebiotic nucleobase which is recognized by the native aptamer of a preQ1 class I riboswitch. Upon binding, the transfer of the ligand's methyl group to a specific cytidine occurs, installing 3-methylcytidine (m3C) in the RNA pocket under release of pre-queuosine (preQ1). Our finding suggests that nucleic acid-mediated methylation is an ancient mechanism that has offered an early path for RNA epigenetics prior to the evolution of protein methyltransferases. Furthermore, our findings may pave the way for the development of riboswitch-descending methylation tools based on rational design as a powerful alternative to in vitro selection approaches.


Assuntos
Conformação de Ácido Nucleico , Nucleosídeo Q/química , RNA/química , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Cinética , Metilação , Estrutura Molecular , Nucleosídeo Q/metabolismo , RNA/genética , RNA/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
14.
Nucleic Acids Res ; 49(8): 4281-4293, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856457

RESUMO

Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.


Assuntos
Estabilidade de RNA , RNA/química , Tubercidina/química , Pareamento de Bases , Cristalografia por Raios X , Mutagênese , Purinas/química , RNA/genética , Termodinâmica
15.
Nat Commun ; 11(1): 5750, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188169

RESUMO

Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.


Assuntos
HIV-1/metabolismo , RNA Viral/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Genes env , HIV-1/química , HIV-1/genética , Espectrometria de Massas , Conformação de Ácido Nucleico , Multimerização Proteica , RNA Viral/química , RNA Viral/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/química
16.
Anal Chem ; 92(20): 13945-13952, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32960586

RESUMO

Two-dimensional mass spectrometry (2D MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer allows for tandem mass spectrometry without requiring ion isolation. In the ICR cell, the precursor ion radii are modulated before fragmentation, which results in modulation of the abundance of their fragments. The resulting 2D mass spectrum enables a correlation between the precursor and fragment ions. In a standard broadband 2D MS, the range of precursor ion cyclotron frequencies is determined by the lowest mass-to-charge (m/z) ratio to be fragmented in the 2D MS experiment, which leads to precursor ion m/z ranges that are much wider than necessary, thereby limiting the resolving power for precursor ions and the accuracy of the correlation between the precursor and fragment ions. We present narrowband modulation 2D MS, which increases the precursor ion resolving power by reducing the precursor ion m/z range, with the aim of resolving the fragment ion patterns of overlapping isotopic distributions. In this proof-of-concept study, we compare broadband and narrowband modulation 2D mass spectra of an equimolar mixture of histone peptide isoforms. In narrowband modulation 2D MS, we were able to separate the fragment ion patterns of all 13C isotopes of the different histone peptide forms. We further demonstrate the potential of narrowband 2D MS for label-free quantification of peptides.


Assuntos
Histonas/química , Espectrometria de Massas/métodos , Peptídeos/análise , Histonas/metabolismo , Modelos Teóricos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Sinais Assistido por Computador
17.
Angew Chem Int Ed Engl ; 59(11): 4309-4313, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31867820

RESUMO

Mass spectrometry (MS) can reliably detect and localize all mass-altering modifications of ribonucleic acids (RNA), but current MS approaches that allow for simultaneous de novo sequencing and modification analysis generally require specialized instrumentation. Here we report a novel RNA dissociation technique, radical transfer dissociation (RTD), that can be used for the comprehensive de novo characterization of ribonucleic acids and their posttranscriptional or synthetic modifications. We demonstrate full sequence coverage for RNA consisting of up to 39 nucleotides and show that RTD is especially useful for RNA with highly labile modifications such as 5-hydroxymethylcytidine and 5-formylcytidine.


Assuntos
Nucleotídeos/química , RNA/química , Espectrometria de Massas em Tandem/métodos , Sequência de Bases , Sítios de Ligação , Cobalto/química , Citidina/análogos & derivados , Citidina/química , Estabilidade de RNA
18.
Nucleic Acids Res ; 47(14): 7223-7234, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31276590

RESUMO

The catalytic strategies of small self-cleaving ribozymes often involve interactions between nucleobases and the ribonucleic acid (RNA) backbone. Here we show that multiply protonated, gaseous RNA has an intrinsic preference for the formation of ionic hydrogen bonds between adenine protonated at N3 and the phosphodiester backbone moiety on its 5'-side that facilitates preferential phosphodiester backbone bond cleavage upon vibrational excitation by low-energy collisionally activated dissociation. Removal of the basic N3 site by deaza-modification of adenine was found to abrogate preferential phosphodiester backbone bond cleavage. No such effects were observed for N1 or N7 of adenine. Importantly, we found that the pH of the solution used for generation of the multiply protonated, gaseous RNA ions by electrospray ionization affects phosphodiester backbone bond cleavage next to adenine, which implies that the protonation patterns in solution are at least in part preserved during and after transfer into the gas phase. Our study suggests that interactions between protonated adenine and phosphodiester moieties of RNA may play a more important mechanistic role in biological processes than considered until now.


Assuntos
Adenina/química , Prótons , Clivagem do RNA , RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Químicos , Estrutura Molecular , Conformação de Ácido Nucleico
19.
FEBS J ; 286(12): 2295-2310, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30869835

RESUMO

The c-Myc protein is a transcription factor with oncogenic potential controlling fundamental cellular processes. Homologs of the human c-myc protooncogene have been identified in the early diploblastic cnidarian Hydra (myc1, myc2). The ancestral Myc1 and Myc2 proteins display the principal design and biochemical properties of their vertebrate derivatives, suggesting that important Myc functions arose very early in metazoan evolution. c-Myc is part of a transcription factor network regulated by several upstream pathways implicated in oncogenesis and development. One of these signaling cascades is the Wnt/ß-Catenin pathway driving cell differentiation and developmental patterning, but also tumorigenic processes including aberrant transcriptional activation of c-myc in several human cancers. Here, we show that genetic or pharmacological stimulation of Wnt/ß-Catenin signaling in Hydra is accompanied by specific downregulation of myc1 at mRNA and protein levels. The myc1 and myc2 promoter regions contain consensus binding sites for the transcription factor Tcf, and Hydra Tcf binds to the regulatory regions of both promoters. The myc1 promoter is also specifically repressed in the presence of ectopic Hydra ß-Catenin/Tcf in avian cell culture. We propose that Hydra myc1 is a negative Wnt signaling target, in contrast to vertebrate c-myc, which is one of the best studied genes activated by this pathway. On the contrary, myc2 is not suppressed by ectopic ß-Catenin in Hydra and presumably represents the structural and functional c-myc ortholog. Our data implicate that the connection between ß-Catenin-mediated signaling and myc1 and myc2 gene regulation is an ancestral metazoan feature. Its impact on decision making in Hydra interstitial stem cells is discussed.


Assuntos
Hydra/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica/genética , Hydra/crescimento & desenvolvimento , Via de Sinalização Wnt/genética , beta Catenina/genética
20.
Anal Chem ; 91(2): 1659-1664, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30614682

RESUMO

Interactions of ribonucleic acids (RNA) with basic ligands such as proteins or aminoglycosides play a key role in fundamental biological processes. Native top-down mass spectrometry (MS) has recently been extended to binding site mapping of RNA-ligand interactions by collisionally activated dissociation, without the need for laborious sample preparation procedures. The technique relies on the preservation of noncovalent interactions at energies that are sufficiently high to cause RNA backbone cleavage. In this study, we address the question of how many and what types of noncovalent interactions allow for binding site mapping by top-down MS. We show that proton transfer from protonated ligand to deprotonated RNA within salt bridges initiates loss of the ligand, but that proton transfer becomes energetically unfavorable in the presence of additional hydrogen bonds such that the noncovalent interactions remain stronger than the covalent RNA backbone bonds.


Assuntos
Gases/química , Peptídeos/química , Peptídeos/metabolismo , RNA/química , RNA/metabolismo , Sequência de Bases , Espectrometria de Massas , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...